National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Molecular mechanisms of checkpoint signalling and termination
Benada, Jan ; Macůrek, Libor (advisor) ; Brábek, Jan (referee) ; Truksa, Jaroslav (referee)
Cells employ an extensive signalling network to protect their genome integrity, termed DNA damage response (DDR). The DDR can trigger cell cycle checkpoints which prevent cell cycle progression and allow repair of DNA damage. The failures in these safeguarding mechanism are represented by serious human malignancies, most predominantly by cancer development. This work aims to contribute to the understanding of how do the cells negatively regulate DDR and cell cycle checkpoint signalling. We focused mainly on Wip1 (PPM1D) phosphatase, which is a major negative regulator of DDR and is indispensable for checkpoint recovery. Firstly, we have shown that Wip1 is degraded during mitosis in APC-Cdc20 dependent manner. Moreover, Wip1 is phosphorylated at multiple residues during mitosis, resulting in inhibition of its enzymatic activity. We suggest that the abrogation of Wip1 activity enables cells to react adequately even to low levels of DNA damage encountered during unperturbed mitosis. In the following publication, we have investigated why the mitotic cells trigger only early events of DDR and do not proceed to the recruitment of DNA repair factors such as 53BP1. We showed that 53BP1 is phosphorylated within its ubiquitination-dependent recruitment domain by CDK1 and Plk1. These phosphorylations prevents...
The role of 53BP1 in the cellular response to double-strand DNA breaks
Liďák, Tomáš ; Macůrek, Libor (advisor) ; Rösel, Daniel (referee)
DNA damage may result in various pathological conditions and contributes to aging and development of cancer. Evolutionarily conserved DNA damage response prevents the acumulation of mutations and protects against genomic instability. Tumor suppressor p53-binding protein 1 (53BP1) is an important regulator of the cellular response to DNA double-strand breaks (DSB) and is a canonical component of ionizing radiation-induced foci which are formed at DNA DSB following radiation exposure. Recently, new insights have been gained into its functions in the DNA damage response. Apart from its subtle role in the DNA damage checkpoints signaling, 53BP1 is a well established player in the DNA DSB repair pathway choice. The outcome of DNA repair is influenced by 53BP1 in several contexts. 53BP1 controls 5' end resection at DNA ends, improves DSB repair in heterochromatin, promotes the mobility of uncapped telomeres and mediates synapsis of DNA ends during V(D)J and class switch recombination. 53BP1 contributes to repair defect in BRCA1 (breast cancer type 1 susceptibility protein)-deficient cells, which may have an impact on the treatment of some types of breast cancer. The aim of this bachelor's thesis is to summarize new findings about the role of 53BP1 in the cellular response to DNA DSB. Powered by TCPDF (www.tcpdf.org)
Role of RAD18 in ubiquitin signaling at DNA double-strand breaks
Palek, Matouš ; Macůrek, Libor (advisor) ; Čermák, Lukáš (referee)
RAD18 is an E3 ubiquitin ligase that prevents the replication forks from collapsing caused by damaged DNA. As an important factor controlling replication, its dysregulation was shown to be associated with some human tumours. However, the clinical relevance of this finding is unknown. The aim of the thesis was evaluation of selected RAD18 variants that had been identified in breast and ovarian cancer patients. This work revealed functional defects of RAD18 variants not only in replication fork protection but also in repair of DNA double-strand breaks. This unconventional role of RAD18 is known to be dependent on upstream ubiquitination events, however, its contribution to the repair per se is not understood. This work aimed to elucidate the function of RAD18 in DNA double-strand break repair by homologous recombination focusing especially on its relationship with 53BP1. Data presented here show that RAD18 effectively disrupts 53BP1 accumulation in the repair foci by competition for the same binding partner and thus promotes resection of DNA ends. This antagonistic function of RAD18 is restricted both spatially (to the vicinity of the repair centre) and temporarily (to S phase). Moreover, it seems to be regulated by existence of RAD18 in two distinct complexes. Potential models for this regulation...
Regulation of the DNA damage response by R2TP mediated MRN complex assembly and control of 53BP1 localisation.
Von Morgen, Patrick ; Hořejší, Zuzana (advisor) ; Bártová, Eva (referee) ; Kleibl, Zdeněk (referee)
DNA double strand breaks are the most dangerous type of DNA damage. The MRN complex and 53BP1 have essential functions in the repair of DNA double strand breaks and are therefore important for maintaining genomic stability and preventing cancer. DNA double strand breaks are repaired by two main mechanisms - homologous recombination and non- homologous end joining. The MRN complex senses DNA double strand breaks and activates a cascade of posttranslational modifications that activates and recruits other effector proteins. In addition MRN mediated resection is important for removing adducts in non-homologous end joining and creating single stranded DNA required for homologous recombination. 53BP1 is recruited to DNA double strand breaks by site specific ubiquitinations and inhibits DNA resection, thereby promoting non-homologous end joining at the expense of homologous recombination. In this thesis we show that MRE11 binds to the R2TP chaperone complex through a CK2 mediated phosphorylation. Knockdown of R2TP or mutating the MRE11 binding site leads to decreased MRE11 levels and impaired DNA repair. Similar phenotype has been observed in cells from patients with ataxia-telangiectasia-like disorder (ATLD), containing MRE11 deletion mutation which is missing the R2TP complex binding site. Based on R2TP...
Characterisation of the mechanisms regulating 53BP1 nuclear transport
Liďák, Tomáš ; Macůrek, Libor (advisor) ; Brábek, Jan (referee)
Tumor suppressor p53-binding protein 1 (53BP1) is an integral part of a sophisticated network of cellular pathways termed as the DNA damage response (DDR). These pathways are specialized in the maintenance of genome integrity. Recently, it was reported that nuclear import of 53BP1 depends on importin ß. Here, I used fluorescence microscopy and co-immunoprecipitation experiments to identify its nuclear localization signal (NLS). Clusters of basic amino acids 1667-KRK-1669 and 1681-KRGRK- 1685 were required for 53BP1 interaction with importin ß and for its nuclear localization. Short peptide containing these two clusters was sufficient for interaction with importin ß and targeting EGFP to the nucleus. Additionally, the effect of 53BP1 phosphorylation at S1678 on its nuclear import was examined. Mimicking the phosphorylation in the 53BP1-S1678D mutant decreased the binding to importin ß and resulted in a mild defect in 53BP1 nuclear import. However, 53BP1 entered the nucleus continuously during the cell cycle, suggesting that CDK-dependent phosphorylation of S1678 probably does not significantly contribute to the regulation of 53BP1 nuclear transport. Taken together, 53BP1 NLS meets the attributes of a classical bipartite NLS. Although no cell cycle-dependent regulation of its import was observed, the...
The role of 53BP1 in the cellular response to double-strand DNA breaks
Liďák, Tomáš ; Macůrek, Libor (advisor) ; Rösel, Daniel (referee)
DNA damage may result in various pathological conditions and contributes to aging and development of cancer. Evolutionarily conserved DNA damage response prevents the acumulation of mutations and protects against genomic instability. Tumor suppressor p53-binding protein 1 (53BP1) is an important regulator of the cellular response to DNA double-strand breaks (DSB) and is a canonical component of ionizing radiation-induced foci which are formed at DNA DSB following radiation exposure. Recently, new insights have been gained into its functions in the DNA damage response. Apart from its subtle role in the DNA damage checkpoints signaling, 53BP1 is a well established player in the DNA DSB repair pathway choice. The outcome of DNA repair is influenced by 53BP1 in several contexts. 53BP1 controls 5' end resection at DNA ends, improves DSB repair in heterochromatin, promotes the mobility of uncapped telomeres and mediates synapsis of DNA ends during V(D)J and class switch recombination. 53BP1 contributes to repair defect in BRCA1 (breast cancer type 1 susceptibility protein)-deficient cells, which may have an impact on the treatment of some types of breast cancer. The aim of this bachelor's thesis is to summarize new findings about the role of 53BP1 in the cellular response to DNA DSB. Powered by TCPDF (www.tcpdf.org)
Molecular mechanisms of checkpoint signalling and termination
Benada, Jan ; Macůrek, Libor (advisor) ; Brábek, Jan (referee) ; Truksa, Jaroslav (referee)
Cells employ an extensive signalling network to protect their genome integrity, termed DNA damage response (DDR). The DDR can trigger cell cycle checkpoints which prevent cell cycle progression and allow repair of DNA damage. The failures in these safeguarding mechanism are represented by serious human malignancies, most predominantly by cancer development. This work aims to contribute to the understanding of how do the cells negatively regulate DDR and cell cycle checkpoint signalling. We focused mainly on Wip1 (PPM1D) phosphatase, which is a major negative regulator of DDR and is indispensable for checkpoint recovery. Firstly, we have shown that Wip1 is degraded during mitosis in APC-Cdc20 dependent manner. Moreover, Wip1 is phosphorylated at multiple residues during mitosis, resulting in inhibition of its enzymatic activity. We suggest that the abrogation of Wip1 activity enables cells to react adequately even to low levels of DNA damage encountered during unperturbed mitosis. In the following publication, we have investigated why the mitotic cells trigger only early events of DDR and do not proceed to the recruitment of DNA repair factors such as 53BP1. We showed that 53BP1 is phosphorylated within its ubiquitination-dependent recruitment domain by CDK1 and Plk1. These phosphorylations prevents...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.